Energy Expenditure Estimation with Smartphone Body Sensors

نویسندگان

  • Amit Pande
  • Yunze Zeng
  • Aveek K. Das
  • Prasant Mohapatra
  • Sheridan Miyamoto
  • Edmund Seto
  • Erik K. Henricson
  • Jay J. Han
  • Irine Moore
چکیده

Energy Expenditure Estimation (EEE) is an important step in tracking personal activity and preventing chronic diseases such as obesity, diabetes and cardiovascular diseases. Accurate and online EEE utilizing small wearable sensors is a difficult task, primarily because most existing schemes work offline or using heuristics. In this work, we focus on accurate EEE for tracking ambulatory activities (walking, standing, climbing upstairs or downstairs) of a common smartphone user. We used existing smartphone sensors (accelerometer and barometer sensor), sampled at low frequency, to accurately detect EEE. Using Artificial Neural Networks, a machine learning technique, we build a generic regression model for EEE that yields upto 89% correlation with actual Energy Expenditure (EE). Using barometer data, in addition to accelerometry is found to significantly improve EEE performance (upto 15%). We compare our results against stateof-the-art Calorimetry Equations (CE) and consumer electronics devices (Fitbit and Nike+ Fuel Band). We were able to demonstrate the superior accuracy achieved by our algorithm. The results were calibrated against COSMED K4b2 calorimeter readings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Demonstration Paper: Accurate Energy Expenditure Estimation using Smartphone Sensors

Accurate and online Energy Expenditure Estimation (EEE) utilizing small wearable sensors is a difficult task with most existing schemes. In this work, we focus on accurate EEE for tracking ambulatory activities of a common smartphone user. We used existing smartphone sensors (accelerometer and barometer sensor), sampled at low frequency, to accurately detect EEE. Using Artificial Neural Network...

متن کامل

Estimation of Human Energy Expenditure Using Inertial Sensors and Heart Rate Sensor

This paper presents a method for estimation of human energy expenditure during normal daily activities as well as sports activities using wearable inertial sensor attached to the person’s thigh and chest as well as feasibility analysis of this method to be used as an application on an average smartphone. This is done by using one inertial sensor attached to the person’s thigh (standard smartpho...

متن کامل

Energy Expenditure Estimation DEMO Application

The paper presents two prototypes for the estimation of human energy expenditure during normal daily activities and exercise. The first prototype employs two dedicated inertial sensors attached to the user’s chest and thigh and a heart rate monitor. The second prototype uses only the accelerometer embedded in a smart phone carried in the user’s pocket. Both systems use machine learning for the ...

متن کامل

Towards Human Energy Expenditure Estimation Using Smart Phone Inertial Sensors

This paper is focused on a machine-learning approach for estimating human energy expenditure during sport and normal daily activities. The paper presents technical feasibility assessment that analyses requirements and applicability of smart phone sensors to human energy expenditure. The paper compares and evaluates three different sensor configuration sets: (i) a heart rate monitor and two stan...

متن کامل

An Adaptable Inertial Sensor Fusion - Based Approach for Energy Expenditure Estimation

Using multiple inertial sensors for energy expenditure estimation provides a useful tool for the assessment of daily life activities. Due to the high variety of new upcoming sensor types and recommendations for sensor placement to assess physiological human body function, an adaptable inertial sensor fusion-based approach is mandatory. In this paper, two inertial body sensors, consisting of a t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013